National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Charge transport optical characterization in semiconductor radiation detectors
Ridzoňová, Katarína ; Belas, Eduard (advisor)
Measurements of DC photocurrent-voltage characteristic, photocurrents spectral response and laser induced transient current technique enable investigation of surface recombination centers, bulk trap levels and distribution of the inner electric field. In the presented work, the n- type planar CdZnTe detectors with quasi Ohmic contacts were studied by above mentioned methods. It has been shown that in the case of strongly absorbed light under the DC regime of illumination not only surface recombination influences the detector's transport properties. The effect of the space charge, created as a consequence of carriers trapped by the impurity levels, must be taken into account. Therefore some new theoretical models were created in order to describe measured photocurrent-voltage dependencies. Obtained data were fitted with the new theory and the mobility and surface recombination velocity for electrons were determined.
Charge transport optical characterization in semiconductor radiation detectors
Ridzoňová, Katarína ; Belas, Eduard (advisor)
Measurements of DC photocurrent-voltage characteristic, photocurrents spectral response and laser induced transient current technique enable investigation of surface recombination centers, bulk trap levels and distribution of the inner electric field. In the presented work, the n- type planar CdZnTe detectors with quasi Ohmic contacts were studied by above mentioned methods. It has been shown that in the case of strongly absorbed light under the DC regime of illumination not only surface recombination influences the detector's transport properties. The effect of the space charge, created as a consequence of carriers trapped by the impurity levels, must be taken into account. Therefore some new theoretical models were created in order to describe measured photocurrent-voltage dependencies. Obtained data were fitted with the new theory and the mobility and surface recombination velocity for electrons were determined.
Charge transport optical characterization in semiconductor radiation detectors
Ridzoňová, Katarína ; Belas, Eduard (advisor) ; Toušek, Jiří (referee)
Measurements of DC photocurrent-voltage characteristic, photocurrents spectral response and laser induced transient current technique enable investigation of surface recombination centers, bulk trap levels and distribution of the inner electric field. In the presented work, the n- type planar CdZnTe detectors with quasi Ohmic contacts were studied by above mentioned methods. It has been shown that in the case of strongly absorbed light under the DC regime of illumination not only surface recombination influences the detector's transport properties. The effect of the space charge, created as a consequence of carriers trapped by the impurity levels, must be taken into account. Therefore some new theoretical models were created in order to describe measured photocurrent-voltage dependencies. Obtained data were fitted with the new theory and the mobility and surface recombination velocity for electrons were determined.
Characterization of Nanostructures Deposited by High-Frequency Magnetron sputtering
Hégr, Ondřej ; Boušek, Jaroslav (advisor)
This thesis deals with the analysis of nano-structured layers deposited by high-frequency magnetron sputtering on the monocrystalline silicon surface. The content of the work focuses on the magnetron sputtering application as an alternative method for passivation and antireflection layers deposition of silicon solar cells. The procedure of pre-deposite silicon surface cleaning by plasma etching in the Ar/H2 gas mixture atmosphere is suggested. In the next step the silicon nitride and aluminum nitride layers with hydrogen content in Ar/N2/H2 gas mixture by magnetron sputtering are deposited. One part of the thesis describes an experimental pseudo-carbide films deposition from a silicon target in the atmosphere of acetylene (C2H2). An emphasis is placed on the research of sputtered layers properties and on the conditions on the silicon-layer interface with the help of the standard as well as special measurement methods. Sputtered layers structure is analyzed by modern X-ray spectroscopy (XPS) and by Fourier infrared spectroscopy (FTIR). Optical ellipsometry and spectrophotometry is used for the diagnostic of the layers optical properties depending upon the wavelength of incident light. A special method of determining the surface lay-out of the charge´s carrier life in the volume and on the surface of silicon is employed to investigate the passivating effects of the sputtered layers.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.